Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular and Cellul...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Cellular Neuroscience
Article . 2008 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
https://dx.doi.org/10.5167/uzh...
Other literature type . 2008
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Constitutive, agonist-accelerated, recycling and lysosomal degradation of GABAB receptors in cortical neurons

Authors: Grampp, T; Notz, V; Broll, I; Fischer, N; Benke, D;

Constitutive, agonist-accelerated, recycling and lysosomal degradation of GABAB receptors in cortical neurons

Abstract

Endocytosis is considered as an important mechanism for regulating cell surface numbers and thereby signaling strength of G protein-coupled receptors. Currently, little is known about the endocytotic pathways of GABA(B) receptors in neurons. Here we report that GABA(B) receptors are constitutively internalized presumably via clathrin-dependent endocytosis in cultured cortical neurons. Colocalization of GABA(B) receptors with endosomal marker proteins indicated sorting of GABA(B) receptors from early endosomes to recycling endosomes and to lysosomes. Cell surface biotinylation experiments revealed fast constitutive recycling of GABA(B) receptors as the predominant pathway that was accelerated by the GABA(B) receptor agonist baclofen. Finally, degradation of GABA(B) receptors in lysosomes was demonstrated by their intracellular accumulation upon inhibition of lysosomal proteases and by blocking recycling which resulted in the redirection of receptors to lysosomes for degradation. These data imply rapid constitutive - agonist-accelerated - recycling of GABA(B) receptors presumably via clathrin-coated pits and their final targeting to lysosomes for degradation.

Keywords

Baclofen, Leupeptins, 2804 Cellular and Molecular Neuroscience, 10050 Institute of Pharmacology and Toxicology, 610 Medicine & health, Endosomes, Cysteine Proteinase Inhibitors, Cell Line, 1307 Cell Biology, Pregnancy, 1312 Molecular Biology, Animals, Humans, Monensin, GABA Agonists, Cells, Cultured, Cerebral Cortex, Neurons, Ionophores, Clathrin, Endocytosis, GABA-B Receptor Agonists, 570 Life sciences; biology, Female, Lysosomes, Biomarkers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    48
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
48
Top 10%
Top 10%
Top 10%
Green
bronze