Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Neurobiol...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Neurobiology
Article . 2006 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Site‐specific interactions of neurotrophin‐3 and fibroblast growth factor (FGF2) in the embryonic development of the mouse cochlear nucleus

Authors: Waheeda A, Hossain; Chrystal, D'Sa; D Kent, Morest;

Site‐specific interactions of neurotrophin‐3 and fibroblast growth factor (FGF2) in the embryonic development of the mouse cochlear nucleus

Abstract

AbstractNeurotrophins and FGF2 contribute to formation of the cochlea, but their roles in cochlear nucleus development are unknown. The effects of these factors may differ in the cochlea and cochlear nucleus, which may influence each other's development. It is important to analyze the effects of these factors on cellular structures at well‐defined steps in the normal morphogenetic sequence. The present study used immunohistochemistry to localize factors in situ and to test hypotheses about their roles in an in vitro model. Specific antibody staining revealed that TrkC, the NT3 receptor, is present in neural precursors prior to embryonic day E11 until after birth. NT3 appeared in precursor cells during migration (E13–E15) and disappeared at birth. TrkC and NT3 occurred in the same structures, including growing axons, terminals, and their synaptic targets. Thus, NT3 tracks the migration routes and the morphogenetic sequences within a window defined by TrkC. In vitro, the cochlear nucleus anlage was explanted from E11 embryos. Cultures were divided into groups fed with defined medium, with or without FGF2, BDNF, and NT3 supplements, alone or in combinations, for 7 days. When neuroblasts migrated and differentiated, immunostaining was used for locating NT3 and TrkC in the morphogenetic sequence, bromodeoxyuridine for proliferation, and synaptic vesicle protein for synaptogenesis. By time‐lapse imaging and quantitative measures, the results support the hypothesis that FGF2 promotes proliferation and migration. NT3 interacts with FGF2 and BDNF to promote neurite outgrowth, fasciculation, and synapse formation. Factors and receptors localize to the structural sites undergoing critical changes. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006

Related Organizations
Keywords

Central Nervous System, Male, Neurons, Embryo, Mammalian, Immunohistochemistry, Mice, Inbred C57BL, Mice, Neurotrophin 3, Pregnancy, Mice, Inbred CBA, Morphogenesis, Animals, Female, Fibroblast Growth Factor 2, Receptor, trkC, Synaptic Vesicles, Cell Division

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Average
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!