Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DNA Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DNA Research
Article . 1996 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DNA Research
Article
License: CC BY NC
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DNA Research
Article . 1997
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cloning and Sequencing of the Gene Encoding the Soluble Fumarate Reductase from Saccharomyces cerevisiae

Authors: Haruhiro Muratsubaki; Reiko Ohki; Keiichiro Enomoto;

Cloning and Sequencing of the Gene Encoding the Soluble Fumarate Reductase from Saccharomyces cerevisiae

Abstract

A gene of the soluble fumarate reductase (FRDS) that binds FAD non-covalently was cloned by polymerase chain reaction (PCR) using degenerate oligonucleotides designed from partial amino acid sequences of highly purified enzyme. The nucleotide sequence of a 0.99-kb amplified product was found to be nearly identical to a partial sequence of an open reading frame (ORF) previously reported (EMBL database accession number S-30830). According to the sequence in the EMBL database, we cloned 1.7-kb fragment containing entire sequence of this ORF by PCR and found that this fragment contained a perfect match to the 0.99-kb sequence amplified with the degenerate primers. From these results, we concluded that this ORF is the FRDS gene. The amino acid sequences of the regions involved in the non-covalent binding of FAD and the active site, which are conserved among the flavoprotein subunits of membrane-bound fumarate reductase and succinate dehydrogenase, were found in FRDS. However, unlike the membrane-bound enzymes, FRDS did not contain the histidine residue that covalently binds the isoalloxazine ring of FAD at or near the corresponding position. FRDS showed high homology to the product of S. cerevisiae OSM1 gene which was reported to be required for growth in hypertonic media.

Related Organizations
Keywords

Base Sequence, Sequence Homology, Amino Acid, Genes, Fungal, Molecular Sequence Data, Saccharomyces cerevisiae, Fungal Proteins, Succinate Dehydrogenase, Solubility, Amino Acid Sequence, Cloning, Molecular, DNA, Fungal

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Average
Top 10%
Average
gold