Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Development
Article
Data sources: UnpayWall
Development
Article . 2013 . Peer-reviewed
Data sources: Crossref
Development
Article . 2014
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Regulation of maternal Wnt mRNA translation in C. elegans embryos

Authors: Marieke, Oldenbroek; Scott M, Robertson; Tugba, Guven-Ozkan; Caroline, Spike; David, Greenstein; Rueyling, Lin;

Regulation of maternal Wnt mRNA translation in C. elegans embryos

Abstract

The restricted spatiotemporal translation of maternal mRNAs, which is crucial for correct cell fate specification in early C. elegans embryos, is regulated primarily through the 3′UTR. Although genetic screens have identified many maternally expressed cell fate-controlling RNA-binding proteins (RBPs), their in vivo targets and the mechanism(s) by which they regulate these targets are less clear. These RBPs are translated in oocytes and localize to one or a few blastomeres in a spatially and temporally dynamic fashion unique for each protein and each blastomere. Here, we characterize the translational regulation of maternally supplied mom-2 mRNA, which encodes a Wnt ligand essential for two separate cell-cell interactions in early embryos. A GFP reporter that includes only the mom-2 3′UTR is translationally repressed properly in oocytes and early embryos, and then correctly translated only in the known Wnt signaling cells. We show that the spatiotemporal translation pattern of this reporter is regulated combinatorially by a set of nine maternally supplied RBPs. These nine proteins all directly bind the mom-2 3′UTR in vitro and function as positive or negative regulators of mom-2 translation in vivo. The net translational readout for the mom-2 3′UTR reporter is determined by competitive binding between positive- and negative-acting RBPs for the 3′UTR, along with the distinct spatiotemporal localization patterns of these regulators. We propose that the 3′UTR of maternal mRNAs contains a combinatorial code that determines the topography of associated RBPs, integrating positive and negative translational inputs.

Keywords

Embryo, Nonmammalian, Green Fluorescent Proteins, Gene Expression Regulation, Developmental, Binding, Competitive, Models, Biological, RNA Transport, Wnt Proteins, Protein Transport, RNA, Messenger, Stored, Phenotype, Protein Biosynthesis, Oocytes, Animals, Humans, Caenorhabditis elegans, Caenorhabditis elegans Proteins, 3' Untranslated Regions, HeLa Cells, Protein Binding, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Average
Top 10%
bronze