Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Knowledge and Data Engineering
Article . 2022 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2022
License: CC BY
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modeling Dynamic User Preference via Dictionary Learning for Sequential Recommendation

Authors: Chao Chen; Dongsheng Li; Junchi Yan; Xiaokang Yang;

Modeling Dynamic User Preference via Dictionary Learning for Sequential Recommendation

Abstract

Capturing the dynamics in user preference is crucial to better predict user future behaviors because user preferences often drift over time. Many existing recommendation algorithms -- including both shallow and deep ones -- often model such dynamics independently, i.e., user static and dynamic preferences are not modeled under the same latent space, which makes it difficult to fuse them for recommendation. This paper considers the problem of embedding a user's sequential behavior into the latent space of user preferences, namely translating sequence to preference. To this end, we formulate the sequential recommendation task as a dictionary learning problem, which learns: 1) a shared dictionary matrix, each row of which represents a partial signal of user dynamic preferences shared across users; and 2) a posterior distribution estimator using a deep autoregressive model integrated with Gated Recurrent Unit (GRU), which can select related rows of the dictionary to represent a user's dynamic preferences conditioned on his/her past behaviors. Qualitative studies on the Netflix dataset demonstrate that the proposed method can capture the user preference drifts over time and quantitative studies on multiple real-world datasets demonstrate that the proposed method can achieve higher accuracy compared with state-of-the-art factorization and neural sequential recommendation methods. The code is available at https://github.com/cchao0116/S2PNM-TKDE2021.

13 pages, 15 figures, TKDE 2021

Related Organizations
Keywords

FOS: Computer and information sciences, Computer Science - Machine Learning, Information Retrieval (cs.IR), Computer Science - Information Retrieval, Machine Learning (cs.LG)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%
Green