Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ARUdAarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Discrete Applied Mathematics
Article . 2018 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2018
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2016
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Maximum weight independent set for ℓclaw-free graphs in polynomial time

Maximum weight independent set for \(\ell\)claw-free graphs in polynomial time
Authors: Brandstädt, Andreas; Mosca, Raffaele;

Maximum weight independent set for ℓclaw-free graphs in polynomial time

Abstract

The Maximum Weight Independent Set (MWIS) problem is a well-known NP-hard problem. For graphs $G_1, G_2$, $G_1+G_2$ denotes the disjoint union of $G_1$ and $G_2$, and for a constant $l \ge 2$, $lG$ denotes the disjoint union of $l$ copies of $G$. A {\em claw} has vertices $a,b,c,d$, and edges $ab,ac,ad$. MWIS can be solved for claw-free graphs in polynomial time; the first two polynomial time algorithms were introduced in 1980 by \cite{Minty1980,Sbihi1980}, then revisited by \cite{NakTam2001}, and recently improved by \cite{FaeOriSta2011,FaeOriSta2014}, and by \cite{NobSas2011,NobSas2015} with the best known time bound in \cite{NobSas2015}. Furthermore MWIS can be solved for the following extensions of claw-free graphs in polynomial time: fork-free graphs \cite{LozMil2008}, $K_2$+claw-free graphs \cite{LozMos2005}, and apple-free graphs \cite{BraLozMos2010,BraKleLozMos2008}. This manuscript shows that for any constant $l$, MWIS can be solved for $l$claw-free graphs in polynomial time. Our approach is based on Farber's approach showing that every $2K_2$-free graph has ${\cal O}(n^2)$ maximal independent sets \cite{Farbe1989}, which directly leads to a polynomial time algorithm for MWIS on $2K_2$-free graphs by dynamic programming. Solving MWIS for $l$claw-free graphs in polynomial time extends known results for claw-free graphs, for $lK_2$-free graphs for any constant $l$ \cite{Aleks1991,FarHujTuz1993,Prisn1995,TsuIdeAriShi1977}, for $K_2$+claw-free graphs, for $2P_3$-free graphs \cite{LozMos2012}, and solves the open questions for $2K_2+P_3$-free graphs and for $P_3$+claw-free graphs being two of the minimal graph classes, defined by forbidding one induced subgraph, for which the complexity of MWIS was an open problem.

Country
Italy
Keywords

FOS: Computer and information sciences, Extremal problems in graph theory, Maximum weight independent set problem; Polynomial time; lclaw-free graphs, Vertex subsets with special properties (dominating sets, independent sets, cliques, etc.), maximum weight independent set problem, polynomial time, Discrete Mathematics (cs.DM), \(\ell\)claw-free graphs, Signed and weighted graphs, Computer Science - Discrete Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Top 10%
Top 10%
Green
bronze