
The dynamics of hydration-water in several phospholipid membranes of different compositions is studied by 2D (1)H-(31)P heteronuclear correlation NMR under magic-angle spinning. By using a (1)H T(2) filter before and a (1)H mixing-time after the evolution period and (31)P detection, inter-bilayer water is selectively detected without resonance overlap from bulk water outside the multilamellar vesicles. Moreover the (1)H T(2) relaxation time of the inter-bilayer water is measured. Lipid membranes with labile protons either in the lipid headgroup or in sterols exhibit water-(31)P correlation peaks while membranes free of exchangeable protons do not, indicating that the mechanism for water-lipid correlation is chemical exchange followed by relayed magnetization transfer to (31)P. In the absence of membrane proteins, the inter-bilayer water (1)H T(2)'s are several tens of milliseconds. Incorporation of charged membrane peptides shortened this inter-bilayer water T(2) significantly. This T(2) reduction is attributed to the peptides' exchangeable protons, molecular motion and intermolecular hydrogen bonding, which affect the water dynamics and the chemically relayed magnetization transfer process.
Magnetic Resonance Spectroscopy, Surface Properties, Lipid Bilayers, Liposomes, Membrane Proteins, Phosphorus Isotopes, Water, Protons, Phospholipids
Magnetic Resonance Spectroscopy, Surface Properties, Lipid Bilayers, Liposomes, Membrane Proteins, Phosphorus Isotopes, Water, Protons, Phospholipids
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 37 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
