Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cellular Signallingarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cellular Signalling
Article . 2002 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Identification of Drosophila Myt1 kinase and its role in Golgi during mitosis

Authors: William D, Cornwell; Paula J, Kaminski; Jeffrey R, Jackson;

Identification of Drosophila Myt1 kinase and its role in Golgi during mitosis

Abstract

Entry into mitosis is regulated by inhibitory phosphorylation of cdc2/cyclin B, and these phosphorylations can be mediated by the Wee kinase family. Here, we present the identification of Drosophila Myt1 (dMyt1) kinase and examine the relationship of Myt1 and Wee1 activities in the context of cdc2 phosphorylation. dMyt1 kinase was found by BLAST-searching the complete Drosophila genome using the amino acid sequence of human Myt1 kinase. A single predicted polypeptide was identified that shared a 48% identity within the kinase domain with human and Xenopus Myt1. Consistent with its putative role as negative regulator of mitotic entry, overexpression of this protein in Drosophila S2 cells resulted in a reduced rate of cellular proliferation while the loss of expression via RNA interference (RNAi) resulted in an increased rate of proliferation. In addition, loss of dMyt1 alone or in combination with Drosophila Wee1 (dWee1) resulted in a reduction of cells in G2/M phase and an increase in G1 phase cells. Finally, loss of dMyt1 alone resulted in a significant reduction of phosphorylation of cdc2 on the threonine-14 (Thr-14) residue as expected. Surprisingly however, a reduction in the phosphorylation of cdc2 on the tyrosine-15 (Tyr-15) residue was only observed when both dMyt1 and dWee1 expression was reduced via RNAi and not by Wee1 alone. Most strikingly, in the absence of dMyt1, Golgi fragmentation during mitosis was incomplete. Our findings suggest that dMyt1 and dWee1 have distinct roles in the regulation of cdc2 phosphorylation and the regulation of mitotic events.

Keywords

Base Sequence, Cell Cycle, Molecular Sequence Data, Golgi Apparatus, Membrane Proteins, Mitosis, Nuclear Proteins, Cell Cycle Proteins, Protein Serine-Threonine Kinases, Protein-Tyrosine Kinases, Cell Line, Kinetics, CDC2 Protein Kinase, Animals, Drosophila Proteins, Humans, Drosophila, Amino Acid Sequence, Protein Kinases, Cell Division

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Average
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!