<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 16269362
The ability to identify food that is nutrient-rich and avoid toxic substances is essential for an animal's survival. Although olfaction and vision contribute to food detection, the gustatory system acts as a final checkpoint control for food acceptance or rejection behavior. Recent studies with model organisms such as mice and Drosophila have identified candidate taste receptors and examined the logic of taste coding in the periphery. Despite differences in terms of gustatory anatomy and taste-receptor families, these gustatory systems share a basic organization that is different from other sensory systems. This review will summarize our current understanding of taste recognition in mammals and Drosophila, highlighting similarities and raising several as yet unanswered questions.
Neuroscience(all), Sense Organs, Recognition, Psychology, Receptors, G-Protein-Coupled, Thinking, Food, Taste, Models, Animal, Avoidance Learning, Animals, Humans, Signal Transduction
Neuroscience(all), Sense Organs, Recognition, Psychology, Receptors, G-Protein-Coupled, Thinking, Food, Taste, Models, Animal, Avoidance Learning, Animals, Humans, Signal Transduction
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 180 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |