Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Blood Cells Molecule...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Blood Cells Molecules and Diseases
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Decreased erythrocyte binding of Siglec-9 increases neutrophil activation in sickle cell disease

Authors: John D. Belcher; Ajit Varki; Anel Lizcano; Greta L. Becker; Julia Nguyen; Zachary Monroe Kiser; Gregory M. Vercellotti;

Decreased erythrocyte binding of Siglec-9 increases neutrophil activation in sickle cell disease

Abstract

Oxidative stress and inflammation promote vaso-occlusion in sickle cell disease (SCD). CD33-related Sialic acid-binding immunoglobulin-type lectins (CD33rSiglecs) are cell surface proteins that recognize sialic acids inhibit innate immune cell functions. We have shown that Siglec-9 on human neutrophils interact with erythrocyte sialic acids (prominently glycophorin-A (GYPA) to suppress neutrophil reactive oxygen species (ROS). We hypothesized that altered sickle erythrocyte membrane sialic acid leads to decreased Siglec-9 binding capability, and thus a decreased neutrophil oxidative burst. SS erythrocytes express significantly more sialic acid than AA erythrocytes (p = 0.02). SS erythrocytes displayed significantly less Siglec-9-Fc binding 39% ± 11 (mean ± SEM) compared to AA erythrocytes 78% ± 5 (p = 0.009). Treatment of AA erythrocytes with sialidase to remove sialic acid decreased binding to 3% ± 7.9 (p ≤ 0.001). When freshly isolated neutrophils were incubated with AA erythrocytes, neutrophils achieved 16% ± 6 of the oxidative burst exhibited by a stimulated neutrophil without erythrocytes. In contrast, neutrophils incubated with SS erythrocytes achieved 47% ± 6 of the oxidative burst (AA versus SS, p = 0.03). Stimulated neutrophils incubated with AA erythrocytes showed minimal NET formation while with SS erythrocytes NETs increased. SS erythrocytes are deficient in binding to neutrophil Siglec-9 which may contribute to the increased oxidative stress in SCD.

Keywords

Sialic Acid Binding Immunoglobulin-like Lectins, Erythrocytes, Anemia, Sickle Cell, Neutrophil Activation, Oxidative Stress, Antigens, CD, Humans, Reactive Oxygen Species, Cells, Cultured, Protein Binding, Respiratory Burst

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Average
Top 10%
bronze