Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1987 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Human complement factor I: analysis of cDNA-derived primary structure and assignment of its gene to chromosome 4.

Authors: G, Goldberger; G A, Bruns; M, Rits; M D, Edge; D J, Kwiatkowski;

Human complement factor I: analysis of cDNA-derived primary structure and assignment of its gene to chromosome 4.

Abstract

Factor I is a serine proteinase of complement which together with one of several specific cofactors cleaves activation products of the third and fourth components of complement (C3b and C4b) and modulates the activity of C3 convertase. A heterodimer glycoprotein (Mr = 88,000), factor I is synthesized as a single-chain precursor, prepro-I, which undergoes intracellular proteolytic processing. The human hepatoma line HepG2, however, secretes predominantly the single-chain precursor pro-I. In order to determine the molecular basis for this apparent processing defect, factor I cDNA clones were isolated from a HepG2 mRNA-derived library. Sequencing of the largest insert, HI1971, revealed that it contains 14 base pairs of 5' untranslated region, the complete coding sequence for the 583-residue prepro-I (NH2-signal peptide-heavy chain-linking peptide-light chain-COOH), two polyadenylation signals within the 200-base pair 3' untranslated region, and a portion of poly(A) tail. Analysis of the derived protein structure 1) reveals a mosaic multidomain structure of the heavy chain; 2) demonstrates structural similarity between intracellular conversion of pro-I and activation of other serine proteinase zymogens; and 3) indicates that the light chain of factor I resembles most closely the active subunit of tissue plasminogen activator among all serine proteinases and factor D among complement proteinases. Furthermore, this protein sequence was compared to the sequences of factor I cDNA clones isolated from normal human liver libraries and found to be identical. By exclusion, this defines as cellular the basis for the inefficient processing of pro-I by the HepG2 line. Chromosomal localization by the somatic cell hybrid method maps the factor I gene to chromosome 4.

Related Organizations
Keywords

Base Sequence, Complement Factor I, Mosaicism, Endopeptidases, Humans, Nucleic Acid Hybridization, Amino Acid Sequence, DNA, Chromosomes, Human, Pair 4, Cloning, Molecular

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    132
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
132
Top 10%
Top 10%
Top 10%
gold