Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://dl.acm.org/ft...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1145/289751...
Article . 2016 . Peer-reviewed
License: ACM Copyright Policies
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2015
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Conference object
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Beating CountSketch for heavy hitters in insertion streams

Authors: Vladimir Braverman; Stephen R. Chestnut; Nikita Ivkin; David P. Woodruff;

Beating CountSketch for heavy hitters in insertion streams

Abstract

Given a stream $p_1, \ldots, p_m$ of items from a universe $\mathcal{U}$, which, without loss of generality we identify with the set of integers $\{1, 2, \ldots, n\}$, we consider the problem of returning all $\ell_2$-heavy hitters, i.e., those items $j$ for which $f_j \geq ��\sqrt{F_2}$, where $f_j$ is the number of occurrences of item $j$ in the stream, and $F_2 = \sum_{i \in [n]} f_i^2$. Such a guarantee is considerably stronger than the $\ell_1$-guarantee, which finds those $j$ for which $f_j \geq ��m$. In 2002, Charikar, Chen, and Farach-Colton suggested the {\sf CountSketch} data structure, which finds all such $j$ using $��(\log^2 n)$ bits of space (for constant $��> 0$). The only known lower bound is $��(\log n)$ bits of space, which comes from the need to specify the identities of the items found. In this paper we show it is possible to achieve $O(\log n \log \log n)$ bits of space for this problem. Our techniques, based on Gaussian processes, lead to a number of other new results for data streams, including (1) The first algorithm for estimating $F_2$ simultaneously at all points in a stream using only $O(\log n\log\log n)$ bits of space, improving a natural union bound and the algorithm of Huang, Tai, and Yi (2014). (2) A way to estimate the $\ell_{\infty}$ norm of a stream up to additive error $��\sqrt{F_2}$ with $O(\log n\log\log n)$ bits of space, resolving Open Question 3 from the IITK 2006 list for insertion only streams.

Related Organizations
Keywords

FOS: Computer and information sciences, Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Top 10%
Top 10%
Green
bronze