Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Arthritis Research &...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Arthritis Research & Therapy
Article . 2009 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Arthritis Research & Therapy
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2009
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Asporin, a susceptibility gene in osteoarthritis, is expressed at higher levels in the more degenerate human intervertebral disc

Authors: Gruber, Helen E; Ingram, Jane A; Hoelscher, Gretchen L; Zinchenko, Natalia; Hanley, Edward N; Sun, Yubo;

Asporin, a susceptibility gene in osteoarthritis, is expressed at higher levels in the more degenerate human intervertebral disc

Abstract

Abstract Introduction Asporin, also known as periodontal ligament-associated protein 1 (PLAP1), is a member of the family of small leucine-rich proteoglycan (SLRP) family. It is present within the cartilage extracellular matrix (ECM), and is reported to have a genetic association with osteoarthritis. Its D14 allele has recently been found to be associated with lumbar disc degeneration in Asian subjects. There have been no studies, however, of this gene's normal immunohistochemical localization within the human intervertebral disc, or of expression levels in Caucasian individuals with disc degeneration. Methods Studies were approved by our human subjects Institutional Review Board. Methods included immunohistochemical localization of asporin in the disc of humans and the sand rat (a small rodent with spontaneous age-related disc degeneration), and Affymetrix microarray analysis of asporin gene expression in vivo and in vitro . Results Immunohistochemical studies of human discs revealed that some, but not all, cells of the outer annulus expressed asporin. Fewer cells in the inner annulus contained asporin, and it was rarely present in cells in the nucleus pulposus. Similar patterns were found for the presence of asporin in lumbar discs of sand rats. Substantial relative gene expression levels were seen for asporin in both disc tissue and in annulus cells grown in three-dimensional culture. More degenerate human discs (Thompson grade 4) showed higher expression levels of asporin than did less degenerate (grade 1, 2 and 3) discs, P = 0.004. Conclusions In the discs of Caucasian subjects studied here, and in the sand rat, greater immunolocalization levels were found in the outer compared to inner annulus. Localization was rare in the nucleus. Gene expression studies showed greatest expression of asporin in the more degenerate human discs in vivo .

Related Organizations
Keywords

Adult, Male, Extracellular Matrix Proteins, Immunology, Gene Expression, Middle Aged, Immunohistochemistry, Rheumatology, Immunology and Allergy, Animals, Humans, Female, Genetic Predisposition to Disease, Osteoarthritis, Spine, Gerbillinae, Intervertebral Disc, Intervertebral Disc Displacement, Research Article, Aged, Oligonucleotide Array Sequence Analysis

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    48
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
48
Top 10%
Top 10%
Top 10%
Green
gold