Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao European Journal of ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
European Journal of Neuroscience
Article . 2009 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Regulation of kinesin light chain 1 level correlates with the development of morphine reward in the mouse brain

Authors: Agnieszka Wawrzczak-Bargiela; Wiktor Bilecki; Ryszard Przewlocki;

Regulation of kinesin light chain 1 level correlates with the development of morphine reward in the mouse brain

Abstract

AbstractPersistent changes that take place during the development of opioid addiction are thought to be due to reorganization of synaptic connections in relevant brain circuits. This neuronal plasticity requires trafficking of signaling molecules that are controlled by kinesins. In neurons, kinesin light chain 1 (KLC1) acts as the primary regulator of kinesin action. We observed that KLC1 was enriched in sub‐cortical regions of the brain in C57Bl/6J mice. KLC1 expression was especially enriched in the striatum, hippocampus and amygdala, which are known to be involved in opioid addiction. Our study revealed that conditioning of C57Bl/6J mice with morphine elevated KLC1 levels in the amygdala, frontal cortex and hippocampus, but not in the striatum. Further study revealed that alterations in KLC1 protein levels in the studied brain regions correlated with the expression of morphine‐induced conditioned place preference. In the cortex, hippocampus and amygdala, KLC1 co‐localized with calcium/calmodulin‐dependent protein kinase II (CaMKII), suggesting that KLC1 was present in the cell bodies and dendrites of pyramidal neurons. Our findings indicate that KLC1, a molecule involved in dendritic and axonal transport in the brain, is affected during chronic morphine treatment and may be involved in the development of opioid addiction.

Related Organizations
Keywords

Male, Neurons, Analysis of Variance, Morphine, Blotting, Western, Fluorescent Antibody Technique, Kinesins, Motor Activity, Amygdala, Corpus Striatum, Mice, Inbred C57BL, Mice, Reward, Conditioning, Psychological, Animals, Calcium-Calmodulin-Dependent Protein Kinase Type 2, Microtubule-Associated Proteins, In Situ Hybridization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?