
This study introduces a deep learning framework based on SMILES representations of chemical structures to predict drug–drug interactions (DDIs). The model extracts Morgan fingerprints and key molecular descriptors, transforming them into raw graphical features for input into a modified ResNet18 architecture. The deep residual network, enhanced with regularization techniques, efficiently addresses training issues such as gradient vanishing and exploding, resulting in superior predictive performance. Experimental results show that StructNet-DDI achieved an AUC of 99.7%, an accuracy of 94.4%, and an AUPR of 99.9%, demonstrating the model’s effectiveness and reliability. These findings highlight that StructNet-DDI can effectively extract crucial features from molecular structures, offering a simple yet robust tool for DDI prediction.
ResNet18, QD241-441, Deep Learning, Molecular Structure, Pharmaceutical Preparations, chemical structures, drug–drug interactions, Organic chemistry, Drug Interactions, fingerprints, SMILES, Article, Algorithms
ResNet18, QD241-441, Deep Learning, Molecular Structure, Pharmaceutical Preparations, chemical structures, drug–drug interactions, Organic chemistry, Drug Interactions, fingerprints, SMILES, Article, Algorithms
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
