Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Cell Scie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Cell Science
Article . 2012 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cannabinoid receptors in submandibular acinar cells: functional coupling between saliva fluid and electrolytes secretion and Ca2+ signalling

Authors: Kopach, Olga; Vats, Juliana; Netsyk, Olga; Voitenko, Nana; Irving, Andrew; Fedirko, Nataliya;

Cannabinoid receptors in submandibular acinar cells: functional coupling between saliva fluid and electrolytes secretion and Ca2+ signalling

Abstract

Cannabinoid receptors (CBRs) belong to G protein-coupled receptor superfamily, which activation in salivary cells inhibits agonist-stimulated salivation and modifies saliva content. However, the role of different CBR subtypes in acinar cell physiology and in intracellular signalling remains unclear. Here, we uncover the functioning of CB1Rs and CB2Rs in acinar cells of rat submandibular gland and their essential role in saliva secretion. Pharmacological activation of CB1Rs and CB2Rs in the submandibular gland suppressed saliva outflow and modified saliva content produced by the submandibular gland in vivo. Using Na+-selective microelectrodes to record secretory Na+ responses in the lumen of acini we observed a reduction in Na+ transport following the activation of CBRs, which was counteracted by the selective CB1Rs antagonist, AM251. In addition, activation of CB1Rs or CB2Rs caused inhibition of Na+-K+-ATPase activity in microsomes derived from the gland tissue as well as isolated acinar cells. Using Ca2+ imaging technique, we showed that an activation of both CB1Rs and CB2Rs alters [Ca2+]cyt signalling in acinar cells by distinct pathways, involving Ca2+ release from the endoplasmic reticulum (ER) and store-operated Ca2+ entry (SOCE), respectively. Our data demonstrate the functional expression of CB1Rs and CB2Rs in acinar cells, and their implications in the regulation of salivary gland functioning.

Country
United Kingdom
Keywords

Male, Sodium, Submandibular Gland, 610, Acinar Cells, Rats, Receptor, Cannabinoid, CB2, Electrolytes, Receptor, Cannabinoid, CB1, Animals, Calcium, Rats, Wistar, Saliva, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Average
Average
bronze