Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genome Biologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genome Biology
Article . 2008 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genome Biology
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genome Biology
Article . 2010
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Groucho/TLE/Grg family of transcriptional co-repressors

Authors: Barbara H, Jennings; David, Ish-Horowicz;

The Groucho/TLE/Grg family of transcriptional co-repressors

Abstract

The Drosophila Groucho (Gro) protein was the founding member of the family of transcriptional co-repressor proteins that now includes the transducin-like enhancer of split (TLE) and Grorelated gene (Grg) proteins in vertebrates. Gro family proteins do not bind DNA directly, but are recruited by a diverse profile of transcription factors, including members of the Hes, Runx, Nkx, LEF1/Tcf, Pax, Six and c-Myc families. The primary structure of Gro proteins includes five identifiable regions, of which the most highly conserved are the amino-terminal glutamine-rich Q domain and the carboxy-terminal WD-repeat domain. The Q domain contains two coiled-coil motifs that facilitate oligomerization into tetramers and binding to some transcription factors. The WD domain folds to form a beta-propeller, which mediates protein-protein interactions. Many transcription factors interact with the WD domain via a short peptide motif that falls into either of two classes: WRPW and related tetrapeptides; and the 'eh1' motif (FxIxxIL). Gro family proteins are broadly expressed during development and in the adult. They have essential functions in many developmental pathways (including Notch and Wnt signaling) and are implicated in the pathogenesis of some cancers. The molecular mechanisms through which Gro proteins act to repress transcription are not yet well understood. It is becoming clear that Gro proteins have different modes of action in vivo dependent on biological context and these include direct and indirect modification of chromatin structure at target genes.

Related Organizations
Keywords

Repressor Proteins, Chemokine CXCL1, Neoplasms, Basic Helix-Loop-Helix Transcription Factors, Animals, Humans, Co-Repressor Proteins

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    156
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
156
Top 1%
Top 10%
Top 10%
gold
Related to Research communities
Cancer Research