
ABSTRACT The next generation of wide-field deep astronomical surveys will deliver unprecedented amounts of images through the 2020s and beyond. As both the sensitivity and depth of observations increase, more blended sources will be detected. This reality can lead to measurement biases that contaminate key astronomical inferences. We implement new deep learning models available through Facebook AI Research’s detectron2 repository to perform the simultaneous tasks of object identification, deblending, and classification on large multiband co-adds from the Hyper Suprime-Cam (HSC). We use existing detection/deblending codes and classification methods to train a suite of deep neural networks, including state-of-the-art transformers. Once trained, we find that transformers outperform traditional convolutional neural networks and are more robust to different contrast scalings. Transformers are able to detect and deblend objects closely matching the ground truth, achieving a median bounding box Intersection over Union of 0.99. Using high-quality class labels from the Hubble Space Telescope, we find that when classifying objects as either stars or galaxies, the best-performing networks can classify galaxies with near 100 per cent completeness and purity across the whole test sample and classify stars above 60 per cent completeness and 80 per cent purity out to HSC i-band magnitudes of 25 mag. This framework can be extended to other upcoming deep surveys such as the Legacy Survey of Space and Time and those with the Roman Space Telescope to enable fast source detection and measurement. Our code, deepdisc, is publicly available at https://github.com/grantmerz/deepdisc.
FOS: Physical sciences, Astrophysics - Instrumentation and Methods for Astrophysics, Instrumentation and Methods for Astrophysics (astro-ph.IM)
FOS: Physical sciences, Astrophysics - Instrumentation and Methods for Astrophysics, Instrumentation and Methods for Astrophysics (astro-ph.IM)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 22 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
