Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Analysis of human skeletal muscle after 48 h immobilization reveals alterations in mRNA and protein for extracellular matrix components

Authors: Urso, M; Scrimgeour, AG; Chen, YW; Thompson, PD; Clarkson, PM;

Analysis of human skeletal muscle after 48 h immobilization reveals alterations in mRNA and protein for extracellular matrix components

Abstract

We examined the effects of 48 h of knee immobilization on alterations in mRNA and protein in human skeletal muscle. We hypothesized that 48 h of immobilization would increase gene expression and respective protein products for ubiquitin-proteasome pathway (UPP) components. Also, we used microarray analysis to identify novel pathways. Biopsies were taken from the vastus muscle of five men (20.4 ± 0.5 yr) before and after 48-h immobilization. Global changes in gene expression were analyzed by use of Affymetrix GeneChips. Candidate genes were confirmed via quantitative RT-PCR. Western blotting (WB) was used to quantify protein products of candidate genes and to assess Akt pathway activation. Immunohistochemistry was used to localize proteins found to be altered when assessed via WB. The greatest percentage of genes showing altered expression with the GeneChip included genes involved in the UPP, metallothionein function, and extracellular matrix (ECM) integrity. Quantitative RT-PCR analysis confirmed increases in mRNA for UPP components [USP-6, small ubiquitin-related modifier (SUMO-1)] and the metallothioneins (MT2A, MT1F, MT1H, MT1X) and decreases in mRNA content for matrix metalloproteinases (MMP-28, TIMP-1) and ECM structural components [collagen III (COLIII) and IV (COLIV)]. Only phosphorylated Akt (Ser473, Thr308), COLIII and COLIV protein levels were significantly different postimmobilization (25, 10, 88, and 28% decrease, respectively). Immunohistochemistry confirmed WB showing decreased staining for collagens postimmobilization. Our results suggest that 48 h of immobilization increases mRNA content for components of the UPP and metallothionein function while decreasing mRNA and protein for ECM components as well as decreased phosphorylation of Akt.

Keywords

Adult, Male, Extracellular Matrix Proteins, metallothioneins, Knee Joint, Reverse Transcriptase Polymerase Chain Reaction, Akt, Biopsy, Gene Expression Profiling, Gene Expression, Ubiquitin-Protein Ligase Complexes, Immunohistochemistry, Immobilization, ubiquitin-proteasome pathway, immunohistochemistry, Humans, RNA, Messenger, Muscle, Skeletal, Oligonucleotide Array Sequence Analysis

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    138
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
138
Top 10%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!