
arXiv: hep-ph/0107036
A phenomenological parameterization of the proton polarized structure function has been developed for x > 0.02 using deep inelastic data up to ~ 50 (GeV/c)**2 as well as available experimental results on both photo- and electro-production of proton resonances. According to the new parameterization the generalized Drell-Hearn-Gerasimov sum rule is predicted to have a zero-crossing point at Q**2 = 0.16 +/- 0.04 (GeV/c)**2. Then, low-order polarized Nachtmann moments have been estimated and their Q**2-behavior has been investigated in terms of leading and higher twists for Q**2 > 1 (GeV/c)**2. The leading twist has been treated at NLO in the strong coupling constant and the effects of higher orders of the perturbative series have been estimated using soft-gluon resummation techniques. In case of the first moment higher-twist effects are found to be quite small for Q**2 > 1 (GeV/c)**2, and the singlet axial charge has been determined to be a0[10 (GeV/c)**2] = 0.16 +/- 0.09. In case of higher order moments, which are sensitive to the large-x region, higher-twist effects are significantly reduced by the introduction of soft gluon contributions, but they are still relevant at Q**2 ~ few (GeV/c)**2 at variance with the case of the unpolarized transverse structure function of the proton. Our finding suggests that spin-dependent correlations among partons may have more impact than spin-independent ones. As a byproduct, it is also shown that the Bloom-Gilman local duality is strongly violated in the region of polarized electroproduction of the Delta(1232) resonance.
revised version to appear in Phys. Rev. D; extended discussion on the generalized DHG sum rule
Nuclear Theory (nucl-th), High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), Nuclear Theory, FOS: Physical sciences
Nuclear Theory (nucl-th), High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), Nuclear Theory, FOS: Physical sciences
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
