
A cryptographic system is described which is secure if and only if computing logarithms over GF(p) is infeasible. Previously published algorithms for computing this function require O(p^{1/2}) complexity in both time and space. An improved algorithm is derived which requires O =(\log^{2} p) complexity if p - 1 has only small prime factors. Such values of p must be avoided in the cryptosystem. Constructive uses for the new algorithm are also described.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 738 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.01% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
