Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Continuous signaling via PI3K isoforms β and γ is required for platelet ADP receptor function in dynamic thrombus stabilization

Authors: Judith M E M, Cosemans; Imke C A, Munnix; Reinhard, Wetzker; Regine, Heller; Shaun P, Jackson; Johan W M, Heemskerk;

Continuous signaling via PI3K isoforms β and γ is required for platelet ADP receptor function in dynamic thrombus stabilization

Abstract

Abstract Signaling from collagen and G protein–coupled receptors leads to platelet adhesion and subsequent thrombus formation. Paracrine agonists such as ADP, thromboxane, and Gas6 are required for platelet aggregate formation. We hypothesized that thrombi are intrinsically unstable structures and that their stabilization requires persistent paracrine activity and continuous signaling, maintaining integrin αIIbβ3 activation. Here, we studied the disassembly of human and murine thrombi formed on collagen under high shear conditions. Platelet aggregates rapidly disintegrated (1) in the absence of fibrinogen-containing plasma; (2) by blocking or inhibiting αIIbβ3; (3) by blocking P2Y12 receptors; (4) by suppression of phosphoinositide 3-kinase (PI3K) β. In murine blood, absence of PI3Kγ led to formation of unstable thrombi, leading to dissociation of multiplatelet aggregates. In addition, blocking PI3Kβ delayed initial thrombus formation and reduced individual platelet-platelet contact. Similarly without flow, agonist-induced aggregation was reversed by late suppression of P2Y12 or PI3K isoforms, resulting in single platelets that had inactivated αIIbβ3 and no longer bound fibrinogen. Together, the data indicate that continuous outside-in signaling via P2Y12 and both PI3Kβ and PI3Kγ isoforms is required for perpetuated αIIbβ3 activation and maintenance of a platelet aggregate. This novel concept of intrinsic, dynamic thrombus instability gives possibilities for the use of antiplatelet therapy.

Keywords

Blood Platelets, Isoenzymes, Phosphatidylinositol 3-Kinases, Receptors, Purinergic P2, Microscopy, Electron, Scanning, Humans, Thrombosis, Receptors, Purinergic P2Y12, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    138
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
138
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!