Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Clinical Infectious ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Clinical Infectious Diseases
Article . 2021 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2021
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2021
License: CC BY
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Clinical Accuracy and Impact of Plasma Cell-Free DNA Fungal Polymerase Chain Reaction Panel for Noninvasive Diagnosis of Fungal Infection

Authors: Fiona, Senchyna; Catherine A, Hogan; Kanagavel, Murugesan; Angel, Moreno; Dora Y, Ho; Aruna, Subramanian; Hayden T, Schwenk; +4 Authors

Clinical Accuracy and Impact of Plasma Cell-Free DNA Fungal Polymerase Chain Reaction Panel for Noninvasive Diagnosis of Fungal Infection

Abstract

Abstract Background Invasive fungal infection (IFI) is a growing cause of morbidity and mortality in oncology and transplant patients. Diagnosis of IFI is often delayed due to need for invasive biopsy and low sensitivity of conventional diagnostic methods. Fungal cell-free DNA (cfDNA) detection in plasma is a novel testing modality for the noninvasive diagnosis of IFI. Methods A novel bioinformatic pipeline was created to interrogate fungal genomes and identify multicopy sequences for cfDNA polymerase chain reaction (PCR) targeting. A real-time PCR panel was developed for 12 genera and species most commonly causing IFI. Sensitivity and specificity of the fungal PCR panel were determined using plasma samples from patients with IFI and non-IFI controls. Clinical impact of the fungal PCR panel was evaluated prospectively based on the treating team’s interpretation of the results. Results Overall, the sensitivity and specificity were 56.5% (65/115; 95% confidence interval [CI], 47.4–65.2) and 99.5% (2064/2075; 95% CI, 99.0–99.7), respectively. In the subset of patients with an optimized plasma volume (2 mL), sensitivity was 69.6% (48/69; 95% CI, 57.9–79.2). Sensitivity was 91.7% (11/12; 95% CI, 62.5–100) for detection of Mucorales agents, 56.3% (9/16; 95% CI, 33.2–76.9) for Aspergillus species, and 84.6% (11/13; 95% CI, 56.5–96.9) for Candida albicans. In a prospective evaluation of 226 patients with suspected IFI, cfDNA testing was positive in 47 (20.8%) patients and resulted in a positive impact on clinical management in 20 of 47 (42.6%). Conclusions The fungal cfDNA PCR panel offers a noninvasive approach to early diagnosis of IFI, providing actionable results for personalized care.

Keywords

Mycoses, Candida albicans, Humans, DNA, Fungal, Real-Time Polymerase Chain Reaction, Cell-Free Nucleic Acids, Invasive Fungal Infections

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 2
    download downloads 27
  • 2
    views
    27
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
40
Top 10%
Top 10%
Top 10%
2
27
Green
hybrid