Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Landslidesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Landslides
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Landslides
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Preliminary assessment of thaw slump hazard to Arctic cultural heritage in Nordenskiöld Land, Svalbard

Authors: Ionut Cristi Nicu; Luigi Lombardo; Lena Rubensdotter;

Preliminary assessment of thaw slump hazard to Arctic cultural heritage in Nordenskiöld Land, Svalbard

Abstract

AbstractPermafrost-dependent landslides occur in a range of sizes and are among the most dynamic landforms in the Arctic in the warming climate. Retrogressive thaw slumps (RTSs) are enlarging landslides triggered by thawing and release of excess water from permafrost ground ice, causing smaller or larger collapses of ground surface, which in turn exposes new permafrost to rapid thawing and collapse. In this study, a preliminary assessment of previous thaw slump activity in Nordenskiöld Land area of Svalbard is made based on remote sensing digitisation of 400 slump-scar features from aerial images from the Norwegian Polar Institute (NPI). RTS properties and distribution are analysed with an emphasis on their implications for the preservation of the Svalbard’s cultural heritage (CH). Our analysis shows that the areas where RTS scars and CH co-exist in Nordenskiöld Land are, at present, limited and cover mainly areas distributed along north-west (Colesbukta, Grønfjorden, Kapp Starostin), north-east (Sassendalen and Sassenfjorden) and south-west (Van Muydenbukta) coastlines. Taking into consideration the preliminary aspect of this inventory and study, it can be stated that for now, RTS and CH sites do not have a high level of co-existence, except for eight sites which are located at less than 100 m to a RTS and one site that is located inside a currently inactive slump-scar. Further mapping of RTS will be undertaken in order to have a complete picture of these climate triggered landslides potentially threatening the Arctic CH. The results of this study, even if preliminary, can be used by local authorities and stakeholders in prioritising future documentation and mitigation measures and can thus present a powerful tool in disaster risk reduction.

Country
Netherlands
Keywords

UT-Hybrid-D, Permafrost, Remote sensing, Thermokarst, Svalbard, ITC-HYBRID, Arctic, Retrogressive thaw slumps, ITC-ISI-JOURNAL-ARTICLE, Cultural heritage, SDG 13 - Climate Action

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Top 10%
Top 10%
Top 10%
hybrid