Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Protein Sciencearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Protein Science
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Protein Science
Article . 2014 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Protein Science
Article . 2015
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Structures of a pan‐specific antagonist antibody complexed to different isoforms of TGFβ reveal structural plasticity of antibody–antigen interactions

Authors: Aaron, Moulin; Magali, Mathieu; Catherine, Lawrence; Russell, Bigelow; Mark, Levine; Christine, Hamel; Jean-Piere, Marquette; +12 Authors

Structures of a pan‐specific antagonist antibody complexed to different isoforms of TGFβ reveal structural plasticity of antibody–antigen interactions

Abstract

AbstractVarious important biological pathways are modulated by TGFβ isoforms; as such they are potential targets for therapeutic intervention. Fresolimumab, also known as GC1008, is a pan‐TGFβ neutralizing antibody that has been tested clinically for several indications including an ongoing trial for focal segmental glomerulosclerosis. The structure of the antigen‐binding fragment of fresolimumab (GC1008 Fab) in complex with TGFβ3 has been reported previously, but the structural capacity of fresolimumab to accommodate tight interactions with TGFβ1 and TGFβ2 was insufficiently understood. We report the crystal structure of the single‐chain variable fragment of fresolimumab (GC1008 scFv) in complex with target TGFβ1 to a resolution of 3.00 Å and the crystal structure of GC1008 Fab in complex with TGFβ2 to 2.83 Å. The structures provide further insight into the details of TGFβ recognition by fresolimumab, give a clear indication of the determinants of fresolimumab pan‐specificity and provide potential starting points for the development of isoform‐specific antibodies using a fresolimumab scaffold.

Related Organizations
Keywords

Models, Molecular, Protein Conformation, Antibodies, Monoclonal, Antibodies, Monoclonal, Humanized, Crystallography, X-Ray, Antibodies, Neutralizing, Antigen-Antibody Reactions, Immunoglobulin Fab Fragments, Antibody Specificity, Transforming Growth Factor beta, Humans, Protein Isoforms, Single-Chain Antibodies

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Top 10%
Average
Average
bronze