Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://dx.doi.org/10.48550/ar...
Article . 2022
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
DBLP
Conference object
Data sources: DBLP
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Using Quantum computers to speed up dynamic testing of software

Authors: Andriy V. Miranskyy;

Using Quantum computers to speed up dynamic testing of software

Abstract

Software under test can be analyzed dynamically, while it is being executed, to find defects. However, as the number and possible values of input parameters increase, the cost of dynamic testing rises. This paper examines whether quantum computers (QCs) can help speed up the dynamic testing of programs written for classical computers (CCs). To accomplish this, an approach is devised involving the following three steps: (1) converting a classical program to a quantum program; (2) computing the number of inputs causing errors, denoted by $K$, using a quantum counting algorithm; and (3) obtaining the actual values of these inputs using Grover's search algorithm. This approach can accelerate exhaustive and non-exhaustive dynamic testing techniques. On the CC, the computational complexity of these techniques is $O(N)$, where $N$ represents the count of combinations of input parameter values passed to the software under test. In contrast, on the QC, the complexity is $O(\varepsilon^{-1} \sqrt{N/K})$, where $\varepsilon$ is a relative error of measuring $K$. The paper illustrates how the approach can be applied and discusses its limitations. Moreover, it provides a toy example executed on a simulator and an actual QC. This paper may be of interest to academics and practitioners as the approach presented in the paper may serve as a starting point for exploring the use of QC for dynamic testing of CC code.

To appear in Proceedings of the 1st International Workshop on Quantum Programming for Software Engineering (QP4SE '22), November 18, 2022, Singapore

Related Organizations
Keywords

Software Engineering (cs.SE), FOS: Computer and information sciences, Computer Science - Software Engineering, Quantum Physics, Emerging Technologies (cs.ET), Computer Science - Emerging Technologies, FOS: Physical sciences, Quantum Physics (quant-ph)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
Green