Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ NRC Publications Arc...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ACS Applied Materials & Interfaces
Article . 2022 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
versions View all 3 versions
addClaim

Correlating Corrosion to Surface Grain Orientations of Polycrystalline Aluminum Alloy by Scanning Electrochemical Cell Microscopy

Authors: Li, Yuanjiao; Morel, Alban; Gallant, Danick; Mauzeroll, Janine;

Correlating Corrosion to Surface Grain Orientations of Polycrystalline Aluminum Alloy by Scanning Electrochemical Cell Microscopy

Abstract

The study of grain-dependent corrosion behaviors of practical polycrystalline metals remains challenging due to the difficulty in eliminating the influences of other microstructural features, such as intermetallic particles and grain boundaries. In this work, we performed thousands of microscopic potentiodynamic polarization measurements on a polycrystalline aluminum alloy AA7075-T73 using the spatially resolved oil-immersed scanning electrochemical cell microscopy measurement. Data were extracted only from grain interior areas excluding intermetallic particles and grain boundaries. Based on the multiple potentiodynamic polarization measurements, the differences between grains can be revealed. Cathodic currents exhibited a strong grain orientation dependence with a decreasing order of {101} > {001} > {111}, agreeing with the prediction from the order of atomic planar density. By contrast, the dependence of anodic currents on grain orientation was weak, and pitting was independent of grain orientation, which could be due to the limited mass transport of ions within the surface oxide film. This work highlights the capability of oil-immersed scanning electrochemical cell microscopy in resolving small electrochemical differences, which will greatly promote the study of grain-dependent behaviors of practical polycrystalline samples.

Country
Canada
Keywords

corrosion, scanning electrochemical cell microscopy (SECCM), grain orientation, polycrystalline, Al alloy

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Top 10%
Top 10%
Top 10%
Green
Related to Research communities