Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Metalsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Metals
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Metals
Conference object
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Metals
Article . 2022
Data sources: DOAJ
https://dx.doi.org/10.15488/13...
Article . 2022
License: CC BY
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Microstructural Investigation of a FeMnAlNi Shape Memory Alloy Processed by Tungsten Inert Gas Wire and Arc Additive Manufacturing

Authors: Vincent Fabian Viebranz; Thomas Hassel; Hans Jürgen Maier;
APC: 2,212.14 EUR

Microstructural Investigation of a FeMnAlNi Shape Memory Alloy Processed by Tungsten Inert Gas Wire and Arc Additive Manufacturing

Abstract

In the present study, tungsten inert gas wire and arc additive manufacturing was used to process an iron-based FeMnAlNi shape memory alloy. By a layer-by-layer method, a wall structure with a length of 60 mm and a height of 40 mm was generated. Bidirectional welding ensured grain growth parallel to the building direction. To maintain a nearly constant temperature–time path upon cooling, the structure was fully cooled after each weld to room temperature (298 K). With this approach, an anisotropic microstructure with a grain length of up to 8 mm (major axis) could be established. The grain morphology and formed phases were investigated by optical microscopy and scanning electron microscopy. The images revealed a difference in the orientation with respect to the building direction of the primarily formed γ grains along the grain boundaries and the secondarily formed γ grains in the heat-affected zones. Subgrains in the α matrix were observed also by scanning electron microscopy. With X-ray diffraction, the preferred orientation of the α grains with respect to the building direction was found to be near ⟨100⟩. Overall, an anisotropic polycrystalline material with a columnar texture could be produced, with a preferred grain orientation promising high values of transformation strains.

Related Organizations
Keywords

Mining engineering. Metallurgy, FeMnAlNi, iron-based shape memory alloy, microstructure, TN1-997, thermomagnetization, wire and arc additive manufacturing, grain morphology, iron-based shape memory alloy; FeMnAlNi; tungsten inert gas welding; wire and arc additive manufacturing; microstructure; grain morphology; texture; thermomagnetization, Dewey Decimal Classification::500 | Naturwissenschaften::530 | Physik, texture, tungsten inert gas welding

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
gold