Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genome Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genome Research
Article
Data sources: UnpayWall
Genome Research
Article . 2002 . Peer-reviewed
Data sources: Crossref
Genome Research
Article . 2002
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Conserved Disruptions in the Predicted Coiled-Coil Domains of Eukaryotic SMC Complexes: Implications for Structure and Function

Authors: Beasley, M; Xu, H; Warren, WD; McKay, MJ;

Conserved Disruptions in the Predicted Coiled-Coil Domains of Eukaryotic SMC Complexes: Implications for Structure and Function

Abstract

The structural maintenance of chromosome (SMC) proteins are required for a number of essential nuclear processes, including those of chromosome condensation, chromatid cohesion, and DNA repair. Eukaryotic SMC proteins form heterodimers capable of binding DNA and possess a DNA-stimulated ATPase activity. They have a characteristic structure of terminal globular domains with two internal arms that are predicted to form a coiled-coil structure interspaced with a globular “hinge” domain. We report here that the predicted coiled-coil arms are disrupted at conserved sites in SMC proteins. These disruptions, which vary in length and sequence identity, abolish the otherwise symmetrical secondary structure of antiparallel SMC heterodimers and provide the first evidence for a possible functional orientation of eukaryotic SMC complexes. The retention of these breaks between evolutionarily distant, yet related, SMC members indicates that they may have a fundamental role in SMC heterodimer function.

Related Organizations
Keywords

570, Saccharomyces cerevisiae Proteins, Sequence Homology, Amino Acid, Chromosomal Proteins, Non-Histone, Molecular Sequence Data, Nuclear Proteins, Cell Cycle Proteins, Xenopus Proteins, 540, Protein Structure, Secondary, Protein Structure, Tertiary, Fungal Proteins, Eukaryotic Cells, Chondroitin Sulfate Proteoglycans, Mutation, Animals, Drosophila Proteins, Humans, Amino Acid Sequence, Carrier Proteins, Dimerization, Conserved Sequence

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Average
Average
Average
bronze