Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Security and Communi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Security and Communication Networks
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2022
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

NSSIA: A New Self-Sovereign Identity Scheme with Accountability

Authors: Qiuyun Lyu; Shaopeng Cheng; Hao Li; Junliang Liu; Yanzhao Shen; Zhen Wang;

NSSIA: A New Self-Sovereign Identity Scheme with Accountability

Abstract

Self-sovereign identity (SSI) is a new distributed method for identity management, commonly used to address the problem that users are lack of control over their identities. However, the excessive pursuit of self-sovereignty in the most existing SSI schemes hinders sanctions against attackers. To deal with the malicious behavior, a few SSI schemes introduce accountability mechanisms, but they sacrifice users’ privacy. In addition, the digital identities (static strings or updatable chains) in the existing SSI schemes are as inputs to a third-party executable program (mobile app, smart contract, etc.) to achieve identity reading, storing and proving, and users’ self-sovereignty are weakened. To solve the above problems, we present a new self-sovereign identity scheme to strike a balance between privacy and accountability and get rid of the dependence on the third-party program. In our scheme, one and only individual-specific executable code is generated as a digital avatar-i for each human to interact with others in cyberspace without a third-party program, in which the embedding of biometrics enhances uniqueness and user control over their identity. In addition, a joint accountability mechanism, which is based on the shamir (t, n) threshold algorithm and a consortium blockchain, is designed to restrict the power of each regulatory authority and protect users’ privacy. Finally, we analyze the security, SSI properties and conduct detailed experiments in terms of the cost of computation, storage, and blockchain gas. The analysis results indicate that our scheme resists the known attacks and fulfills all the six SSI properties. Compared with the state-of-the-art schemes, the extensive experiment results show that the cost is larger in server storage, blockchain storage, and blockchain gas, but is still low enough for practical situations.

Related Organizations
Keywords

FOS: Computer and information sciences, Computer Science - Cryptography and Security, Cryptography and Security (cs.CR)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
Green
gold