Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Infection and Immuni...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Infection and Immunity
Article . 1982 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Characterization of a Galactose-Specific Lectin from Actinomyces viscosus by a Model Aggregation System

Authors: Ann H. Costello; Othmar Gabriel; Mary J. Heeb;

Characterization of a Galactose-Specific Lectin from Actinomyces viscosus by a Model Aggregation System

Abstract

A simple model system has been developed in which lectin-mediated aggregation of glycoprotein-coated beads can be monitored by following the decrease in light scattering at 650 nm. Aggregation has been characterized with the lectin of Actinomyces viscosus T14V. Its dependence on pH, temperature, and stirring rate was examined, and the number of bacterial cells in relation to the number of latex beads resulting in optimal aggregation was established. This system has the advantage of permitting the study of a single ligand of defined structure. The ligand density was determined with radiolabeled glycoproteins. Under the conditions of the assay, ligand leakage was less than 3%, and ligands were not displaced from the beads by various proteins, glycoproteins, or by other components present in the assay mixture. Latex beads coated with asialofetuin aggregate upon the addition of A. viscosus T14V cells. By contrast, when asialofetuin was first extensively treated with purified galactose oxidase, no aggregation occurred. Only after reduction with NaBH 4 was aggregation restored, demonstrating that galactose termini of asialofetuin are essential for the binding of A. viscosus lectin. An absolute requirement for calcium was also demonstrated. Various sugars inhibited aggregation in the following order, starting with the most effective: lactose, methyl-β-D-galactopyranoside, galactose, N -acetylgalactosamine, methyl-α-D-galactopyranoside. Beads coated with fimbriae from A. viscosus coaggregated with neuraminidase-treated human erythrocytes and with Streptococcus sanguis cells. In each instance the aggregation was inhibited by lactose, indicating that the A. viscosus lectin is located in the fimbriae. Cells grown under different conditions differed in their effectiveness in aggregating glycoprotein-coated beads, suggesting differences in lectin density or accessibility. Two different experimental designs were used to establish the minimum ligand density for aggregation to occur. In one type of experiment, a threshold concentration was found for asialo α 1 -acid glycoprotein, but not for asialofetuin. With an alternate approach in which a different population of galactose residues was exposed, a threshold phenomenon was also demonstrated for asialofetuin. The importance of structural ligand features in the aggregation assay is discussed in view of these findings.

Related Organizations
Keywords

Temperature, Asialoglycoproteins, Galactose, Hydrogen-Ion Concentration, Models, Biological, Microspheres, Fimbriae, Bacterial, Lectins, Actinomyces, Calcium, alpha-Fetoproteins, Fetuins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Average
Top 10%
Top 10%
bronze