
Abstract Premature birth is associated with a high risk of damage in the parietal cortex, a key area for numerical and non-numerical magnitude perception and mathematical reasoning. Children born preterm have higher rates of learning difficulties for school mathematics. In this study, we investigated how preterm newborns (born at 28–34 weeks of gestation age) and full-term newborns respond to visual numerosity after habituation to auditory stimuli of different numerosities. The results show that the two groups have a similar preferential looking response to visual numerosity, both preferring the incongruent set after crossmodal habituation. These results suggest that the numerosity system is resistant to prematurity.
Numerosity perception, Preterm, Crossmodal perception; Neonatal cognition; Newborns; Numerical cognition; Numerosity perception; Preterm, Crossmodal perception, Neonatal cognition, Newborns, Numerical cognition
Numerosity perception, Preterm, Crossmodal perception; Neonatal cognition; Newborns; Numerical cognition; Numerosity perception; Preterm, Crossmodal perception, Neonatal cognition, Newborns, Numerical cognition
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
