
Toom-Cook strategy is a well-known method for building algorithms to efficiently multiply dense univariate polynomials. Efficiency of the algorithm depends on the choice of interpolation points and on the exact sequence of operations for evaluation and interpolation. If carefully tuned, it gives the fastest algorithm for a wide range of inputs. This work smoothly extends the Toom strategy to polynomial rings, with a focus on . Moreover a method is proposed to find the faster Toom multiplication algorithm for any given splitting order. New results found with it, for polynomials in characteristic 2, are presented. A new extension for multivariate polynomials is also introduced; through a new definition of density leading Toom strategy to be efficient.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 49 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
