
A family of genetically and structurally homologous complexes, the proteasome lid, Cop9 signalosome (CSN) and eukaryotic translation initiation factor 3, mediate different regulatory pathways. The CSN functions in numerous eukaryotes as a regulator of development and signaling, yet until now no evidence for a complex has been found in Saccharomyces cerevisiae. We identified a group of proteins, including a homolog of Csn5/Jab1 and four uncharacterized PCI components, that interact in a manner suggesting they form a complex analogous to the CSN in S. cerevisiae. These newly identified subunits play a role in adaptation to pheromone signaling. Deletants for individual subunits enhance pheromone response and increase mating efficiency. Overexpression of individual subunits or a human homolog mitigates sst2‐induced pheromone sensitivity. Csi1, a novel CSN interactor, exhibits opposite phenotypes. Deletants also accumulate Cdc53/cullin in a Rub1‐modified form; however, this role of the CSN appears to be distinct from that in the mating pathway.
Saccharomyces cerevisiae Proteins, COP9 Signalosome Complex, Multiprotein Complexes, Proteins, Cell Cycle Proteins, Saccharomyces cerevisiae, Cullin Proteins, Pheromones, Peptide Hydrolases
Saccharomyces cerevisiae Proteins, COP9 Signalosome Complex, Multiprotein Complexes, Proteins, Cell Cycle Proteins, Saccharomyces cerevisiae, Cullin Proteins, Pheromones, Peptide Hydrolases
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 65 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
