
AbstractSuppose a graph G is given with two vertex-disjoint sets of vertices Z1 and Z2. Can we partition the remaining vertices of G such that we obtain two connected vertex-disjoint subgraphs of G that contain Z1 and Z2, respectively? This problem is known as the 2-Disjoint Connected Subgraphs problem. It is already NP-complete for the class of n-vertex graphs G=(V,E) in which Z1 and Z2 each contain a connected set that dominates all vertices in V∖(Z1∪Z2). We present an O∗(1.2051n) time algorithm that solves it for this graph class. As a consequence, we can also solve this problem in O∗(1.2051n) time for the classes of n-vertex P6-free graphs and split graphs. This is an improvement upon a recent O∗(1.5790n) time algorithm for these two classes. Our approach translates the problem to a generalized version of hypergraph 2-coloring and combines inclusion/exclusion with measure and conquer.
Dominating set, Exact algorithm, 511, Disjoint connected subgraphs, Theoretical Computer Science, Computer Science(all)
Dominating set, Exact algorithm, 511, Disjoint connected subgraphs, Theoretical Computer Science, Computer Science(all)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
