Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Biology an...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Biology and Evolution
Article . 2002 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Genes of the Pseudoviridae (Ty1/copia Retrotransposons)

Authors: Brooke D, Peterson-Burch; Daniel F, Voytas;

Genes of the Pseudoviridae (Ty1/copia Retrotransposons)

Abstract

A comprehensive survey of the Pseudoviridae (Ty1/copia) retroelement family was conducted using the GenBank sequence database and completed genome sequences of several model organisms. Plant genomes were the most abundant sources of Pseudoviridae, with the Arabidopsis thaliana genome having 276 distinct elements. A reverse transcriptase amino acid sequence phylogeny indicated that the Pseudoviridae comprises highly divergent members. Coding sequences for a representative subset of elements were analyzed to identify conserved domains and differences that may underlie functional divergence. With the exception of some fungal elements (e.g., Ty1), most Pseudoviridae encode Gag and Pol on a single open reading frame. In addition to the nearly ubiquitous RNA-binding motif of nucleocapsid, three new conserved domains were identified in Gag. pol-encoded aspartic protease was similar to the retroviral enzyme and could be mapped onto the HIV-1 structure. Pol was highly conserved throughout the family. The greatest divergence among Pol sequences was seen in the C-terminus of integrase (IN). We defined a large motif (GKGY) after the IN catalytic domain that is unique to the Pseudoviridae. Additionally, the extreme C-terminus of IN is rich in simple sequence motifs. A distinct lineage of Pseudoviridae in plants have envlike genes. This lineage has undergone a large expansion of Gag characterized by an alpha-helix-rich domain containing coiled-coil motifs. In several elements, this domain is flanked on both sides by RNA-binding domains. We propose that this monophyletic lineage defines a new Pseudoviridae genus, herein referred to as the AGROVIRUS:

Related Organizations
Keywords

Models, Molecular, Base Sequence, Genes, Viral, Retroelements, Protein Conformation, Molecular Sequence Data, Genes, gag, Genes, pol, Evolution, Molecular, Viral Proteins, Animals, Amino Acid Sequence, Phylogeny

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    92
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
92
Top 10%
Top 10%
Top 10%
gold