Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Science of The Total Environment
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An optimization model for water resources allocation in Dongjiang River Basin of Guangdong-Hong Kong-Macao Greater Bay Area under multiple complexities

Authors: Yaping, Huang; Yanpeng, Cai; Yulei, Xie; Fan, Zhang; Yanhu, He; Pan, Zhang; Bowen, Li; +4 Authors

An optimization model for water resources allocation in Dongjiang River Basin of Guangdong-Hong Kong-Macao Greater Bay Area under multiple complexities

Abstract

In this research, an interval two-stage stochastic fuzzy-interval credibility constraint programming (ISFICP) method was developed for water resources allocation among multiple water users under complexities and uncertainties. The method could reflect the multiple complexities of water resources management, also trade-offs between the system benefits and violation risks. Dongjiang River (DJR) Basin, which supplies water to several core cities in south China such as Guangzhou, Shenzhen, and Hong Kong, was applied as the real demonstrative case. The water resources system of DJR Basin is particularly complex due to it is the primary source water for Guangdong-Hong Kong-Macao Greater Bay Area (GBA). Through considering multiple complexities and uncertainties of the water resources system, such as natural, economic, and social conditions, ISFICP was developed to obtain potential water-allocation schemes. Probabilistic distribution, fuzzy-interval sets (FIS), and discrete intervals were introduced to represent the multiple uncertainties associated with the multiple complexities. The results indicated that the model could provide practical schemes for local decision-makers under multiple scenarios such as flow levels, credibility levels, and recycling rates.

Related Organizations
Keywords

China, Macau, Rivers, Water Resources, Hong Kong, Water, Resource Allocation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!