
Abstract Craniometaphyseal dysplasia (CMD) is a monogenic human disorder characterized by thickening of craniofacial bones and flaring metaphyses of long bones. Mutations for autosomal dominant CMD have been identified in the progressive ankylosis gene ANKH. Previous studies of Ank loss-of-function models, Anknull/null and Ankank/ank mice, suggest that Ank plays a role in the regulation of bone mineralization. However, the mechanism for Ank mutations leading to CMD remains unknown. We generated the first knockin (KI) mouse model for CMD expressing a human mutation (Phe377 deletion) in ANK. Homozygous Ank knockin mice (AnkKI/KI) replicate many typical features of human CMD including hyperostosis of craniofacial bones, massive jawbones, decreased diameters of cranial foramina, obliteration of nasal sinuses, fusion of middle ear bones, and club-shaped femurs. In addition, AnkKI/KI mice have increased serum alkaline phosphatase and TRACP5b, as reported in CMD patients. Biochemical markers of bone formation and bone resorption, N-terminal propeptide of type I procollagen and type I collagen cross-linked C-terminal telopeptide, are significantly increased in AnkKI/KI mice, suggesting increased bone turnover. Interestingly, AnkKI/KI bone marrow–derived macrophage cultures show decreased osteoclastogenesis. Despite the hyperostotic phenotype, bone matrix in AnkKI/KI mice is hypomineralized and less mature, indicating that biomechanical properties of bones may be compromised by the Ank mutation. We believe this new mouse model will facilitate studies of skeletal abnormalities in CMD at cellular and molecular levels.
Bone Diseases, Developmental, Tartrate-Resistant Acid Phosphatase, Macrophages, Acid Phosphatase, Skull, Membrane Proteins, Mice, Transgenic, Alkaline Phosphatase, Collagen Type I, Isoenzymes, Disease Models, Animal, Mice, Animals, Humans, Phosphate Transport Proteins, Sequence Deletion
Bone Diseases, Developmental, Tartrate-Resistant Acid Phosphatase, Macrophages, Acid Phosphatase, Skull, Membrane Proteins, Mice, Transgenic, Alkaline Phosphatase, Collagen Type I, Isoenzymes, Disease Models, Animal, Mice, Animals, Humans, Phosphate Transport Proteins, Sequence Deletion
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 42 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
