Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Bone and ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Bone and Mineral Research
Article . 2009 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Introduction of a Phe377del Mutation in ANK Creates a Mouse Model for Craniometaphyseal Dysplasia

Authors: I-Ping, Chen; Chiachien J, Wang; Sara, Strecker; Boguslawa, Koczon-Jaremko; Adele, Boskey; Ernst J, Reichenberger;

Introduction of a Phe377del Mutation in ANK Creates a Mouse Model for Craniometaphyseal Dysplasia

Abstract

Abstract Craniometaphyseal dysplasia (CMD) is a monogenic human disorder characterized by thickening of craniofacial bones and flaring metaphyses of long bones. Mutations for autosomal dominant CMD have been identified in the progressive ankylosis gene ANKH. Previous studies of Ank loss-of-function models, Anknull/null and Ankank/ank mice, suggest that Ank plays a role in the regulation of bone mineralization. However, the mechanism for Ank mutations leading to CMD remains unknown. We generated the first knockin (KI) mouse model for CMD expressing a human mutation (Phe377 deletion) in ANK. Homozygous Ank knockin mice (AnkKI/KI) replicate many typical features of human CMD including hyperostosis of craniofacial bones, massive jawbones, decreased diameters of cranial foramina, obliteration of nasal sinuses, fusion of middle ear bones, and club-shaped femurs. In addition, AnkKI/KI mice have increased serum alkaline phosphatase and TRACP5b, as reported in CMD patients. Biochemical markers of bone formation and bone resorption, N-terminal propeptide of type I procollagen and type I collagen cross-linked C-terminal telopeptide, are significantly increased in AnkKI/KI mice, suggesting increased bone turnover. Interestingly, AnkKI/KI bone marrow–derived macrophage cultures show decreased osteoclastogenesis. Despite the hyperostotic phenotype, bone matrix in AnkKI/KI mice is hypomineralized and less mature, indicating that biomechanical properties of bones may be compromised by the Ank mutation. We believe this new mouse model will facilitate studies of skeletal abnormalities in CMD at cellular and molecular levels.

Keywords

Bone Diseases, Developmental, Tartrate-Resistant Acid Phosphatase, Macrophages, Acid Phosphatase, Skull, Membrane Proteins, Mice, Transgenic, Alkaline Phosphatase, Collagen Type I, Isoenzymes, Disease Models, Animal, Mice, Animals, Humans, Phosphate Transport Proteins, Sequence Deletion

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    42
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
42
Top 10%
Top 10%
Top 10%
hybrid