Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Histochemistry and C...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Histochemistry and Cell Biology
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Histochemistry and Cell Biology
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2020
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Exploring human splenic red pulp vasculature in virtual reality: details of sheathed capillaries and the open capillary network

Authors: Birte S. Steiniger; Henriette Pfeffer; Michael Guthe; Oleg Lobachev;

Exploring human splenic red pulp vasculature in virtual reality: details of sheathed capillaries and the open capillary network

Abstract

AbstractWe reconstructed serial sections of a representative adult human spleen to clarify the unknown arrangement of the splenic microvasculature, such as terminal arterioles, sheathed capillaries, the red pulp capillary network and venules. The resulting 3D model was evaluated in virtual reality (VR). Capillary sheaths often occurred after the second or third branching of a terminal arteriole and covered its capillary side or end branches. The sheaths started directly after the final smooth muscle cells of the arteriole and consisted of cuboidal CD271++ stromal sheath cells surrounded and infiltrated by B lymphocytes and macrophages. Some sheaths covered up to four sequential capillary bifurcations thus forming bizarre elongated structures. Each sheath had a unique form. Apart from symmetric dichotomous branchings inside the sheath, sheathed capillaries also gave off side branches, which crossed the sheath and freely ended at its surface. These side branches are likely to distribute materials from the incoming blood to sheath-associated B lymphocytes and macrophages and thus represent the first location for recognition of blood-borne antigens in the spleen. A few non-sheathed bypasses from terminal arterioles to the red pulp capillary network also exist. Red pulp venules are primarily supplied by sinuses, but they also exhibit a few connections to the capillary network. Thus, the human splenic red pulp harbors a primarily open microcirculation with a very minor closed part.

Keywords

Adult, Male, Original Paper, Young Adult, Capillary sheaths ; Adult [MeSH] ; Virtual reality ; Humans [MeSH] ; Spleen/blood supply [MeSH] ; 3D reconstruction ; Spleen/pathology [MeSH] ; Male [MeSH] ; Original Paper ; Young Adult [MeSH] ; Human spleen ; Capillaries/pathology [MeSH] ; Virtual Reality [MeSH], Virtual Reality, Humans, Spleen, Capillaries

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Top 10%
Top 10%
Green
hybrid