Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Intellige...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Intelligent Information Systems
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research.fi
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Research.fi
https://dx.doi.org/10.60692/dt...
Other literature type . 2022
Data sources: Datacite
https://dx.doi.org/10.60692/3r...
Other literature type . 2022
Data sources: Datacite
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Attention-based hybrid CNN-LSTM and spectral data augmentation for COVID-19 diagnosis from cough sound

هجين قائم على الانتباه CNN - LSTM وزيادة البيانات الطيفية لتشخيص COVID -19 من صوت السعال
Authors: Skander Hamdi; Mourad Oussalah; Abdelouahab Moussaoui; Mohamed Saidi;

Attention-based hybrid CNN-LSTM and spectral data augmentation for COVID-19 diagnosis from cough sound

Abstract

AbstractCOVID-19 pandemic has fueled the interest in artificial intelligence tools for quick diagnosis to limit virus spreading. Over 60% of people who are infected complain of a dry cough. Cough and other respiratory sounds were used to build diagnosis models in much recent research. We propose in this work, an augmentation pipeline which is applied on the pre-filtered data and uses i) pitch-shifting technique to augment the raw signal and, ii) spectral data augmentation technique SpecAugment to augment the computed mel-spectrograms. A deep learning based architecture that hybridizes convolution neural networks and long-short term memory with an attention mechanism is proposed for building the classification model. The feasibility of the proposed is demonstrated through a set of testing scenarios using the large-scale COUGHVID cough dataset and through a comparison with three baselines models. We have shown that our classification model achieved 91.13% of testing accuracy, 90.93% of sensitivity and an area under the curve of receiver operating characteristic of 91.13%.

Countries
Finland, Finland
Keywords

Pulmonary and Respiratory Medicine, Artificial neural network, Radiology, Nuclear Medicine and Imaging, Artificial intelligence, Data set, Convolutional neural network, Set (abstract data type), Infectious disease (medical specialty), Speech recognition, Pattern recognition (psychology), Mathematical analysis, Article, Analysis of Cardiac and Respiratory Sounds, Convolution (computer science), Engineering, Health Sciences, Dry cough, FOS: Mathematics, Pathology, Diagnosis and Management of Chronic Cough, Disease, Spectrogram, Internal medicine, Cough Hypersensitivity Syndrome, Test set, Electronic engineering, Deep learning, Limit (mathematics), Applications of Deep Learning in Medical Imaging, Computer science, Sensitivity (control systems), Programming language, Coronavirus disease 2019 (COVID-19), Cough Reflex Sensitivity, Medicine, Signal Analysis, Pipeline (software), Mathematics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    44
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
44
Top 1%
Top 10%
Top 1%
Green
hybrid