
Abstract Remote medical resources configuration and management involves complex combinatorial Multi-Objective Optimization problem, whose computational complexity is a typical NP problem. Based on the MOEA/D framework, this paper applies the two-way local search strategy and the new selection strategy based on domination amount and proposes the IMOEA/D framework, following which each individual produces two individuals in mutation. In this paper, by using a new selection strategy, the parent individual is compared with two mutated offspring individuals, and the more excellent one is selected for the next generation of evolution. The proposed algorithm IMOEA/D is compared with eMOEA, MOEA/D and NSGA-II, and experimental results show that for most test functions, IMOEA/D proposed is superior to the other three algorithms in terms of convergence rate and distribution.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 19 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
