Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2022 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2022
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Eliciting Knowledge from Pretrained Language Models for Prototypical Prompt Verbalizer

Authors: Wei, Yinyi; Mo, Tong; Jiang, Yongtao; Li, Weiping; Zhao, Wen;

Eliciting Knowledge from Pretrained Language Models for Prototypical Prompt Verbalizer

Abstract

Recent advances on prompt-tuning cast few-shot classification tasks as a masked language modeling problem. By wrapping input into a template and using a verbalizer which constructs a mapping between label space and label word space, prompt-tuning can achieve excellent results in zero-shot and few-shot scenarios. However, typical prompt-tuning needs a manually designed verbalizer which requires domain expertise and human efforts. And the insufficient label space may introduce considerable bias into the results. In this paper, we focus on eliciting knowledge from pretrained language models and propose a prototypical prompt verbalizer for prompt-tuning. Labels are represented by prototypical embeddings in the feature space rather than by discrete words. The distances between the embedding at the masked position of input and prototypical embeddings are used as classification criterion. For zero-shot settings, knowledge is elicited from pretrained language models by a manually designed template to form initial prototypical embeddings. For few-shot settings, models are tuned to learn meaningful and interpretable prototypical embeddings. Our method optimizes models by contrastive learning. Extensive experimental results on several many-class text classification datasets with low-resource settings demonstrate the effectiveness of our approach compared with other verbalizer construction methods. Our implementation is available at https://github.com/Ydongd/prototypical-prompt-verbalizer.

Related Organizations
Keywords

FOS: Computer and information sciences, Computer Science - Computation and Language, Computation and Language (cs.CL)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Top 10%
Top 10%
Green