Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cancer Sciencearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cancer Science
Article . 2008 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cancer Science
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cancer Science
Article . 2008
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Erythropoietin‐producing hepatocyte B6 variant‐derived peptides with the ability to induce glioma‐reactive cytotoxic T lymphocytes in human leukocyte antigen‐A2+ glioma patients

Authors: Yoshihiro Komohara; Ryuya Yamanaka; Akira Yamada; Jun-ichi Nikawa; Mingyue Jin; Shigeki Shichijo; Kyogo Itoh;

Erythropoietin‐producing hepatocyte B6 variant‐derived peptides with the ability to induce glioma‐reactive cytotoxic T lymphocytes in human leukocyte antigen‐A2+ glioma patients

Abstract

We recently cloned a variant form of erythropoietin‐producing hepatocyte (Eph)B6, a member of the Eph receptor tyrosine kinase family. In the present study, we examined the expression of the EphB6 variant (EphB6v) in a panel of brain tumor cell lines and glioblastoma tissues and we found that EphB6v was preferentially expressed in malignant brain tumors, such as glioblastomas and anaplastic astrocytomas. The EphB6v has a unique 54 amino acid sequence at the C‐terminal that is not found in normal EphB6. Therefore, we attempted to identify antigenic peptides unique to EphB6v for immunotherapy. The two EphB6v‐derived peptides exhibited the ability to bind to human leukocyte antigen (HLA)‐A0201 molecules, and each of them was able to induce cytotoxic T lymphocytes in vitro in the peripheral blood mononuclear cells of HLA‐A2+ glioma patients. The cytotoxicity was mediated by peptide‐specific CD8+ T cells in an HLA‐A2‐restricted manner. The expression of EphB6v was also observed in different types of cancer (e.g. lung, colon, stomach, liver and pancreatic) cells. Taken together, the two peptides derived from EphB6v might be appropriate targets for peptide‐based specific immunotherapy for HLA‐A2+ patients with various cancers. (Cancer Sci 2008; 99: 1656–1662)

Keywords

HLA-A Antigens, Brain Neoplasms, Gene Expression, Receptor Protein-Tyrosine Kinases, Astrocytoma, Gene Expression Regulation, Case-Control Studies, Cell Line, Tumor, HLA-A2 Antigen, Hepatocytes, Humans, Immunotherapy, Glioblastoma, Receptors, Eph Family, T-Lymphocytes, Cytotoxic

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Average
Average
Top 10%
gold
Related to Research communities
Cancer Research