Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Human Molecular Gene...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Human Molecular Genetics
Article . 2007 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Tagging SNP haplotype analysis of the secretory PLA2-V gene, PLA2G5 , shows strong association with LDL and oxLDL levels, suggesting functional distinction from sPLA2-IIA: results from the UDACS study

Authors: Fotios Drenos; Simon Thompson; Steven J. Hurel; Jackie A. Cooper; Steve E. Humphries; Olov Wiklund; Peter T.E. Wootton; +4 Authors

Tagging SNP haplotype analysis of the secretory PLA2-V gene, PLA2G5 , shows strong association with LDL and oxLDL levels, suggesting functional distinction from sPLA2-IIA: results from the UDACS study

Abstract

Animal and human studies suggest that both secretory PLA2 (sPLA2)-V and sPLA2-IIA (encoded, respectively, by the neighbouring PLA2G5 and PLA2G2A genes) contribute to atherogenesis. Elevated plasma sPLA2-IIA predicts coronary heart disease (CHD) risk, but no mass assay for sPLA2-V is available. We previously reported that tagging single nucleotide polymorphism (tSNP) haplotypes of PLA2G2A are strongly associated with sPLA2-IIA mass, but not lipid levels. Here, we use tSNPs of the sPLA2-V gene to investigate the association of PLA2G5 with CHD risk markers. Seven PLA2G5 tSNPs genotypes, explaining >92% of the locus genetic variability, were determined in 519 patients with Type II diabetes (in whom PLA2G2A tSNP data was available), and defined seven common haplotypes (frequencies >5%). PLA2G5 and PLA2G2A tSNPs showed linkage disequilibrium (LD). Compared to the common PLA2G5 haplotype, H1 (frequency 34.9%), haplotypes H2-7 were associated with overall higher plasma LDL (P < 0.00004) and total cholesterol (P < 0.00003) levels yet lower oxLDL/LDL (P = 0.006) and sPLA2-IIA mass (P = 0.04), probably reflecting LD with PLA2G2A. Intronic tSNP (rs11573248), unlikely itself to be functional, distinguished H1 from LDL-raising haplotypes and may mark a functional site. In conclusion, PLA2G5 tSNP haplotypes demonstrate an association with total and LDL cholesterol and oxLDL/LDL, not seen with PLA2G2A, thus confirming distinct functional roles for these two sPLA2s.

Related Organizations
Keywords

Male, Genotype, Cholesterol, LDL, Middle Aged, Group II Phospholipases A2, Polymorphism, Single Nucleotide, Phospholipases A, Group V Phospholipases A2, Cohort Studies, Lipoproteins, LDL, Phospholipases A2, Haplotypes, Humans, Female, Aged

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Top 10%
Top 10%
Top 10%
bronze