Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Philosophical Transa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Philosophical Transactions of the Royal Society B Biological Sciences
Article . 1999 . Peer-reviewed
License: Royal Society Data Sharing and Accessibility
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Norepinephrine exocytosis stimulated by α–latrotoxin requires both external and stored Ca 2+ and is mediated by latrophilin, G proteins and phospholipase C

Authors: Rahman, MA; Ashton, AC; Meunier, FA; Davletov, BA; Dolly, JO; Ushkaryov, YA;

Norepinephrine exocytosis stimulated by α–latrotoxin requires both external and stored Ca 2+ and is mediated by latrophilin, G proteins and phospholipase C

Abstract

α–latrotoxin (LTX) stimulates massive release of neurotransmitters by binding to a heptahelical transmembrane protein, latrophilin. Our experiments demonstrate that latrophilin is a G–protein–coupled receptor that specifically associates with heterotrimeric G proteins. The latrophilin–G protein complex is very stable in the presence of GDP but dissociates when incubated with GTP, suggesting a functional interaction. As revealed by immunostaining, latrophilin interacts with Gα q/11 and Gα o but not with Gα s , Gα i or Gα z , indicating that this receptor may couple to several G proteins but it is not promiscuous. The mechanisms underlying LTX–evoked norepinephrine secretion from rat brain nerve terminals were also studied. In the presence of extracellular Ca 2+ , LTX triggers vesicular exocytosis because botulinum neurotoxins E, C1 or tetanus toxin inhibit the Ca 2+ –dependent component of the toxin–evoked release. Based on (i) the known involvement of Gα q in the regulation of inositol–1,4,5–triphosphate generation and (ii) the requirement of Ca 2+ in LTX action, we tested the effect of inhibitors of Ca 2+ mobilization on the toxin–evoked norepinephrine release. It was found that aminosteroid U73122, which inhibits the coupling of G proteins to phospholipase C, blocks the Ca 2+ –dependent toxin's action. Thapsigargin, which depletes intracellular Ca 2+ stores, also potently decreases the effect of LTX in the presence of extracellular Ca 2+ . On the other hand, clostridial neurotoxins or drugs interfering with Ca 2+ metabolism do not inhibit the Ca 2+ –independent component of LTX–stimulated release. In the absence of Ca 2+ , the toxin induces in the presynaptic membrane non–selective pores permeable to small fluorescent dyes; these pores may allow efflux of neurotransmitters from the cytoplasm. Our results suggest that LTX stimulates norepinephrine exocytosis only in the presence of external Ca 2+ provided intracellular Ca 2+ stores are unperturbed and that latrophilin, G proteins and phospholipase C may mediate the mobilization of stored Ca 2+ , which then triggers secretion.

Related Organizations
Keywords

Receptors, Peptide, Neuroblastoma-Cells, Chromaffin Cells, Frog Neuromuscular-Junction, Spider Venoms, Calcium Release, In Vitro Techniques, Exocytosis, Norepinephrine, GTP-Binding Proteins, alpha-latrotoxin, Transmitter Release, latrophilin, Animals, Ca2+ stores, Widow Spider Venom, Rats, Ca2+, Type C Phospholipases, Calcium, Synaptic Vesicles, exocytosis, norepinephrine release, Neurotransmitter Release, Nerve-Terminals, Receptor, Synaptosomes

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    76
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
76
Top 10%
Top 10%
Top 10%
bronze