
pmid: 34506132
SARS-CoV-2 is the causative agent of coronavirus, globally known as COVID-19. There are ongoing researches to develop effective therapeutics and vaccines against COVID-19 using various methods. We currently conduct research based on the fragment molecular orbital (FMO) method for calculating the electronic structure of protein complexes and analyzing their quantitative molecular interactions. This enables us to extensively analyze the molecular interactions in residues or functional group units acting inside protein complexes. Such precise interaction data are available in the FMO database (FMODB). We have performed several FMO calculations on the structures of SARS-CoV-2 related proteins registered in the protein data bank and published the results of 681 structures, including three structural proteins and eleven nonstructural proteins, on the COVID-19 special page.These data not only aid the interpretation of experimentally determined structures but also the understanding of protein functions, which is useful for rational drug design for COVID-19.
COVID-19 Vaccines, SARS-CoV-2, COVID-19, Humans, Proteins, Pandemics
COVID-19 Vaccines, SARS-CoV-2, COVID-19, Humans, Proteins, Pandemics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 20 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
