Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Arthritis & Rheumati...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Arthritis & Rheumatism
Article . 2000 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Evidence for antimuscarinic acetylcholine receptor antibody-mediated secretory dysfunction in NOD mice

Authors: K H, Nguyen; J, Brayer; S, Cha; S, Diggs; U, Yasunari; G, Hilal; A B, Peck; +1 Authors

Evidence for antimuscarinic acetylcholine receptor antibody-mediated secretory dysfunction in NOD mice

Abstract

Antibodies directed against general and specific target-organ autoantigens are present in the sera of human patients and animal models with autoimmune disease. The relevance of these autoantibodies to the disease process remains ambiguous in most cases. In autoimmune exocrinopathy (Sjögren's syndrome), autoantibodies to the intracellular nuclear proteins SSA/Ro and SSB/La, as well as the cell surface muscarinic cholinergic receptor (M3) are observed. To evaluate the potential role of these factors in the loss of secretory function of exocrine tissues, a panel of monoclonal and polyclonal antibodies was developed for passive transfer into the NOD animal model.Monoclonal antibodies to mouse SSB/La, rat M3 receptor, and a rabbit polyclonal antiparotid secretory protein antibody were obtained for this study. These antibody reagents were subsequently infused into NOD-scid mice. Saliva flow rates were subsequently monitored over a 72-hour period. Submandibular gland lysates were examined by Western blotting for alteration of the distribution of the water channel protein aquaporin (AQP).Evaluation of the secretory response indicated that only antibodies directed toward the extracellular domains of the M3 receptor were capable of mediating the exocrine dysfunction aspect of the clinical pathology of the autoimmune disease. In vitro stimulation with a muscarinic agonist of submandibular gland cells isolated from mice treated with anti-M3 antibody, but not saline or the isotype control, failed to translocate AQP to the plasma membrane.These findings define a clear role for the humoral immune response and the targeting of the cell surface M3 signal transduction receptor as primary events in the development of clinical symptoms of autoimmune exocrinopathy. Furthermore, the anti-M3 receptor activity may negatively affect the secretory response through perturbation of normal signal transduction events, leading to translocation of the epithelial cell water channel.

Related Organizations
Keywords

Cell Membrane, Antibodies, Monoclonal, Aquaporins, Receptors, Muscarinic, Translocation, Genetic, Mice, Mice, Inbred NOD, Antibody Formation, COS Cells, Animals, Female, Autoantibodies

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    119
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
119
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!