Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neurosciencearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuroscience
Article . 2009 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Neuroscience
Article . 2009
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Molecular determinants of kainate receptor trafficking

Authors: F. Coussen;

Molecular determinants of kainate receptor trafficking

Abstract

Glutamate receptors of the kainate subtype are ionotropic receptors that play a key role in the modulation of neuronal network activity. The role of kainate receptors depends on their precise membrane and subcellular localization in presynaptic, extrasynaptic and postsynaptic domains. These receptors are composed of the combination of five subunits, three of them having several splice variants. The subunits and splice variants show great divergence in their C-terminal cytoplasmic tail domains, which have been implicated in intracellular trafficking of homomeric and heteromeric receptors. Differential trafficking of kainate receptors to specific neuronal compartments likely relies on interactions between the different kainate receptor subunits with distinct subsets of protein partners that interact with C-terminal domains. These C-terminal domains have also been implicated in the degradation of kainate receptors. Finally, the phosphorylation of the C-terminal domain regulates receptor trafficking and function. This review summarizes our knowledge on the regulation of membrane delivery and trafficking of kainate receptors implicating C-terminal domains of the different isoforms and focuses on the identification and characterization of the function of interacting partners.

Keywords

Synaptic Membranes, Glutamic Acid, Synaptic Transmission, Protein Structure, Tertiary, Protein Subunits, Protein Transport, Receptors, Kainic Acid, Synapses, Animals, Humans, Phosphorylation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!