
pmid: 31586947
pmc: PMC7402554
Objectives A new variant of Chlamydia trachomatis (nvCT) was discovered in Sweden in 2006. The nvCT has a plasmid deletion, which escaped detection by two nucleic acid amplification tests (Abbott-Roche, AR), which were used in 14 of 21 Swedish counties. The objectives of this study were to assess when and where nvCT emerged in Sweden, the proportion of nvCT in each county and the role of a potential fitness difference between nvCT and co-circulating wild-type strains (wtCT). Methods We used a compartmental mathematical model describing the spatial and temporal spread of nvCT and wtCT. We parameterised the model using sexual behaviour data and Swedish spatial and demographic data. We used Bayesian inference to fit the model to surveillance data about reported diagnoses of chlamydia infection in each county and data from four counties that assessed the proportion of nvCT in multiple years. Results Model results indicated that nvCT emerged in central Sweden (Dalarna, Gävleborg, Västernorrland), reaching a proportion of 1% of prevalent CT infections in late 2002 or early 2003. The diagnostic selective advantage enabled rapid spread of nvCT in the presence of high treatment rates. After detection, the proportion of nvCT decreased from 30%–70% in AR counties and 5%–20% in counties that Becton Dickinson tests, to around 5% in 2015 in all counties. The decrease in nvCT was consistent with an estimated fitness cost of around 5% in transmissibility or 17% reduction in infectious duration. Conclusions We reconstructed the course of a natural experiment in which a mutant strain of C. trachomatis spread across Sweden. Our modelling study provides support, for the first time, of a reduced transmissibility or infectious duration of nvCT. This mathematical model improved our understanding of the first nvCT epidemic in Sweden and can be adapted to investigate the impact of future diagnostic escape mutants.
Sweden, Infectious Medicine, nucleic acid amplification test, Clinical Laboratory Medicine, Epidemiology, Infektionsmedicin, 610 Medicine & health, Bayes Theorem, Chlamydia trachomatis, Chlamydia Infections, Models, Theoretical, Klinisk laboratoriemedicin, basic reproduction number, 360 Social problems & social services, Mutation, Prevalence, Humans, Epidemics, Nucleic Acid Amplification Techniques, mathematical model, Plasmids
Sweden, Infectious Medicine, nucleic acid amplification test, Clinical Laboratory Medicine, Epidemiology, Infektionsmedicin, 610 Medicine & health, Bayes Theorem, Chlamydia trachomatis, Chlamydia Infections, Models, Theoretical, Klinisk laboratoriemedicin, basic reproduction number, 360 Social problems & social services, Mutation, Prevalence, Humans, Epidemics, Nucleic Acid Amplification Techniques, mathematical model, Plasmids
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
