Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Breast Cancer Resear...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Breast Cancer Research and Treatment
Article . 2009 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Menin, a product of the MENI gene, binds to estrogen receptor to enhance its activity in breast cancer cells: possibility of a novel predictive factor for tamoxifen resistance

Authors: Hitomi, Imachi; Koji, Murao; Hiroaki, Dobashi; Mohammad M, Bhuyan; Xueyuan, Cao; Keiichi, Kontani; Shoko, Niki; +8 Authors

Menin, a product of the MENI gene, binds to estrogen receptor to enhance its activity in breast cancer cells: possibility of a novel predictive factor for tamoxifen resistance

Abstract

Multiple coactivator and corepressor complexes play an important role in endocrine processes and breast cancer; in particular, estrogen and estrogen receptor-alpha (ERalpha) promote the proliferation of breast cancer cells. Menin is a tumor suppressor encoded by Men1 that is mutated in the human-inherited tumor syndrome multiple endocrine neoplasia type 1 (MEN1); it also serves as a critical link in the recruitment of nuclear receptor-mediated transcription. Here, we show that menin expressed in breast cancer cell line MCF-7 is colocalized with ERalpha and functions as a direct coactivator of ER-mediated transcription in breast cancer cells. In MCF-7 cells, coexpression of menin and estrogen-response element-luciferase induced the activity of the latter in a hormone-dependent manner. Cells knocked down for ERalpha exhibited impaired ERE-luciferase activity induced by menin. Mammalian two-hybrid assay and GST pull-down assays indicated that menin could interact with the AF-2 domain of ERalpha. These results indicate that menin is a direct activator of ERalpha function. Tamoxifen inhibited the binding of menin to AF-2 in mammalian two-hybrid assay, but in menin-overexpressing clones, tamoxifen suppressed ERE-luciferase activity only to the levels of nontreated wild-type MCF-7. In a clinical study with 65 ER-positive breast cancer samples-all of which had been treated with tamoxifen for 2-5 years as adjuvant therapies--menin-positive tumors had a worse outcome than menin-negative ones. These indicated that menin can function as a transcriptional regulator of ERalpha and is a possible predictive factor for tamoxifen resistance.

Keywords

Binding Sites, Estradiol, Estrogen Antagonists, Estrogen Receptor alpha, Nuclear Proteins, Breast Neoplasms, Kaplan-Meier Estimate, Middle Aged, Prognosis, Disease-Free Survival, Gene Expression Regulation, Neoplastic, Chemotherapy, Adjuvant, Drug Resistance, Neoplasm, Cell Line, Tumor, COS Cells, Chlorocebus aethiops, Animals, Humans, Female, Neoplasm Staging

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    51
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
51
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!